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Abstract 
 

NASA is currently evaluating the benefits of 

transitioning to a highly reconfigurable network of 

arrayed dish antennas to support an increasing 

number of deep space missions. The next-generation 

Deep Space Network (NG-DSN), as currently 

conceptualized, would require extensive automation to 

reduce operations cost and handle the increased 

complexity associated with monitoring and controlling 

the larger number of antennas. This paper presents a 

prototype operations architecture for the proposed 

NG-DSN that is fundamentally based on three 

concepts: physical state variables of the system to be 

controlled, expressions of operational intent for those 

state variables (“goals”), and models describing the 

behavior of these state variables and their interactions. 

These concepts shape the software design of an 

automated control system, the model-based systems 

engineering analysis that feeds this design, and the 

human operator interface to the control system. This 

control system provides for automation of capabilities 

such as resource allocation and fault recovery (both 

localized and system-wide). This paper describes the 

development and demonstration of the control system 

on prototype antenna array hardware at the Jet 

Propulsion Laboratory. 

 

 

1. Introduction 
 

Onboard control systems on spacecraft and control 

systems of the ground communication infrastructure 

that support the spacecraft are both becoming more 

and more complex. These increasingly complex 

systems demand the development of increasingly 

complex control software, and as such automation, 

coordination, robustness, and scalability become 

crucial features. System engineers responsible for such 

control systems therefore design them so that the intent 

of the users is made explicit during operations. This 

enables the system to make more “educated” decisions 

on how and when to execute individual tasks that 

satisfy both the operator’s goals as well as the system 

constraints. Such systems present information to the 

operator at a higher level of abstraction, so that 

minimal human intervention is required. This 

ultimately results in cost savings. 

This paper discusses one such control software 

system that has been designed and developed by a 

research and technology development team at the Jet 

Propulsion Laboratory (JPL). The purpose of this 

prototype system is to monitor and control a large 

array of deep space communication antennas—

potentially such as that of the proposed next-

generation Deep Space Network (NG-DSN) (discussed 

in Section 2)—and as such support simultaneous 

tracking of multiple spacecraft. A distinguishing 

characteristic of this prototype system, which we refer 

to as Array Monitor and Control Prototype (AMCP) in 

this paper, is that its operation is entirely goal-based—

the system behaves autonomously to satisfy the 

original intent of the operator. 

We applied a model-based system engineering 

methodology called State Analysis (SA) [1] (Section 3) 

throughout three phases of this software system’s life 

cycle: system engineering (Section 4), state-based 



software design shaped by the products from system 

engineering (Section 5), and system operations. For the 

operations aspect, we dedicate a section on how we 

engineered our system to support goal-based 

operations (Section 6) and how the user interface was 

designed to complement it (Section 7). We conclude 

by presenting our results from the operations 

demonstrations (Section 8.1 on simulated 

demonstration and 8.2 on demonstration using real 

hardware), followed by our final thoughts on the 

results achieved from this project. 

Prior to our main discussion, however, we first 

present some background on the application domain 

and our motivation for developing the AMCP.  

 

2. Antenna Arrays in NASA’s Deep Space 

Network 
 

The DSN is “an international network of antennas 

that supports interplanetary spacecraft missions.”[2] 

Dozens of missions today rely solely on the DSN to 

establish communication links between spacecraft and 

ground mission control, and each of these links are 

established at DSN complexes situated around the 

globe. The problem lies in the fact that each DSN 

complex is comprised of only a few antennas that have 

large apertures, and the functional loss of a single 

antenna can have significant, undesirable impact on the 

multiple missions scheduled to use it. Each antenna 

represents a single point of failure for these missions. 

NASA is currently evaluating a modernization 

strategy to address risks such as the one stated above. 

A potential part of this strategy is the deployment of 

large arrays of small antennas to replace the deep space 

communication capabilities of the aging, large aperture 

antennas. (For the purposes of this paper, we use the 

term NG-DSN, as mentioned previously, to refer to 

this proposed antenna array infrastructure.) It is 

possible to achieve the equal effective aperture of a 

single, large antenna by combining the signals from a 

precisely coordinated array of smaller antennas 

(leveraging the principle of “interferometry”) [3]. The 

current NG-DSN concept is to deploy as many as 

hundreds of antennas per DSN complex [4]. In 

addition to the antennas, it is expected that a 

significant number of heterogeneous DSN subsystems 

will exist at each complex to support spacecraft 

communication. Given these attributes—the sheer 

number of antennas and the variety of subsystems that 

behave differently—monitoring and controlling of the 

NG-DSN system would present a difficult challenge. 

This monitor and control problem is made even more 

difficult because antenna arrays need to be tightly 

synchronized and seamlessly coordinated if they are to 

properly achieve the effective apertures of larger 

antennas. 

Our AMCP software aims to address this 

complexity issue. By taking a goal-based operations 

approach, the system adapts and scales regardless of 

the number of antennas to be used, the number of 

simultaneous spacecraft to be supported, or the number 

of different subsystems to be controlled. Because the 

system makes control decisions to satisfy the 

operator’s goals, it can also autonomously allocate 

resources and resolve system anomalies. 

In the next section, we present the model-based 

systems engineering methodology that was applied to 

the development of AMCP. 

 

3. State Analysis Approach to System 

Engineering 
 

A novel model-based systems engineering 

methodology, called State Analysis (SA) [1], has been 

developed to complement the traditional functional 

decomposition approach and better address the 

complexity challenge described previously. It provides 

a methodical and rigorous approach for:  

 

• Modeling physical behavior in terms of system 

state variables and the relationships between them 

(state-based behavioral modeling); 

• Capturing mission objectives in detailed scenarios 

motivated by operator intent (goal-directed 

operations engineering); and 

• Describing the methods by which objectives are 

achieved (state-based software engineering). 

 

The following three sections of the paper describe 

in more detail the application of each of these facets to 

the development of AMCP. For detailed information 

on SA refer to references [1,5,6]. 

 

4. Modeling Physical Behaviors 
 

The state-based behavioral modeling aspect of SA 

begins with the identification of the important state 

variables in the system. It goes on to describe the 

causal effects among the state variables, commands 

and measurements (under both nominal and off-

nominal situations) in the form of state effects models, 

measurement models, and command models. It is 

important to note that these models may be expressed 

using any appropriate representation, e.g., differential 

equations, tables, state charts, pseudo-code, plain text, 

etc. The granularity of the models is at the discretion of 



the system engineer, based on the abstractions and 

assumptions (s)he defines. 

Our models for the AMCP required careful analysis 

of how the antenna hardware would operate, how the 

received signal would be processed, how the targets 

(spacecraft) would be located and tracked, and other 

physical behaviors of the NG-DSN’s system under 

control. (Our antenna hardware model was actually 

based on an existing, prototype array antenna at JPL, 

which we used to demonstrate AMCP’s monitor and 

control capabilities using real hardware—Section 8.2 

discusses the result of this demonstration.) The result 

of our modeling work is graphically summarized in the 

State Effects Diagram (SED) shown in Figure 1. In this 

section, we focus the discussion on the region 

contained within the dashed border, that is, only on the 

behaviors related to the “mechanical” aspect of the 

individual antennas including antenna pointing. In the 

SED, circles represent state variables, triangles 

represent measurements from the system under control, 

and inverted triangles represent commands to the 

system under control.  

As can be seen in Figure 1, there are four pertinent 

state variables in the bounded region: (1) Ant N 

Mechanical Health, (2) Ant N Mechanical Power 

and OpMode, (3) Ant N Pointing Profile, and (4) 

Ant N Pointing. The “Ant N” prefix in the names 

indicates that these state variables exist for each 

antenna in the system. 

The Ant N Mechanical Health state variable 

models the health state of the mechanical components 

of an antenna. We defined this state variable to have a 

binary value of healthy or unhealthy. For the 

purposes of this prototyping effort, we have chosen to 

represent uncertainty for this and all other discrete 

state variables in our system as either known or 

unknown, though more refined uncertainty 

representations (e.g., probabilistic belief states) could 

be used. 

Ant N Mechanical Power and OpMode represents 

the power state and the operational mode of an 

antenna. Therefore, the state variable in fact contains 

two separate states. The possible operational modes 

were defined as manual override (where the antenna 

is not under the control of our automated control 

system) shutdown (where the antenna is under our 

system’s control but the motor is powered off), idle 

(where the antenna is under our system’s control and 

the motor is powered on, but is inactive), or tracking 

(where the antenna is under our system’s control and 

the motor is on, and is actively tracking a target 

according to the pointing profile). The power state is 

 
Figure 1. The state effects diagram of the antenna array “system under control” 



either powered or unpowered. The state effects model 

for this state variable is shown in Figure 2.  

We must mention that the two state variables 

introduced thus far model discrete states, and they may 

be modeled as finite state machines, for example. 

However, we now introduce state variables that model 

continuous states. SA allows both discrete and 

continuous events to be represented in the models. In 

fact, SA makes no restrictions on model types, as 

mentioned above. 

Ant N Pointing Profile represents the time-ordered 

set of coordinates that the antenna should track. The 

coordinates are specified in azimuth and elevation 

degrees and are usually the pointing coordinates for a 

target spacecraft (but not always, as in the case where 

antennas may be tracking multiple “nearby” spacecraft 

simultaneously).  

Ant N Pointing represents the actual, real-time 

pointing coordinates of the antenna. Its state effects 

model is of a continuous nature. For example, 

assuming that the antenna is powered, tracking, and 

healthy, Ant N Pointing’s coordinates will be: 

1. the azimuth and elevation specified by one of 

the entries in the pointing profile, if the entry’s 

time is the current time; 

2. interpolated (or extrapolated) from the pointing 

profile if the profile does not have an entry 

with time that corresponds to the current time; 

or 

3. the last pointing coordinates if either: (a) 

coordinates from 1 or 2 above are physically 

unrealizable or (b) the pointing profile is an 

empty list. 

Note that this model represents an idealized model of 

behavior, in that it does not allow for the antenna 

pointing to stray from the pointing profile, e.g., due to 

environmental effects or imperfections in the antenna 

hardware or low-level software design. A higher-

fidelity model would include such effects. 

State variables can affect each other, but they are 

also affected by commands. For the four state variables 

under discussion, the Ant N Profile command affects 

the Ant N Pointing Profile state variable by causing 

our system under control to hold a new pointing profile 

in memory. Similarly, the Ant N Mechanical Power 

and OpMode command affects the state variable of 

the same name by causing the antenna mechanical state 

to change (see Figure 2). 

State variables, in turn, can affect the measurements 

provided by sensors in the system under control. 

Intuitively, when a state changes in the physical world, 

the change may be observed by the control system via 

one or more measurements. Three of our state 

variables have an effect on measurements: (1) Ant N 

Pointing affects the Ant N AzEl and Ant N Error 

(the as-measured azimuth and elevation coordinates 

and error values) measurements produced by the 

antenna system under control, (2) Ant N Mechanical 

Power and OpMode affects the Ant N Power and 

Ant N Available (indicates that the antenna may be 

controlled by our system, i.e., not in manual override 

mode) measurements, and (3) both Ant N Mechanical 

Power and OpMode and Ant N Mechanical Health 

affect the Ant N Mechanical Health measurement 

(because the health measurement is unavailable when 

the antenna is unpowered). 

We used a State Database [5] implemented in a 

structured wiki tool to capture the models and 

descriptions produced from our system engineering 

process. It allowed our models to be expressed using 

different representations and supported our highly 

collaborative engineering environment. 

Behavioral modeling can be a painstaking process, 

often requiring several iterations and corrections. 

Nevertheless, the time and energy invested in this stage 

pays dividends because: 

1. The models directly inform the software design, 

which can be approached as an incremental 

step to the behavioral modeling, rather than a 

complete design from scratch; 

2. The models shape the goal-based operations 

engineering artifacts, as discussed in Section 6; 

3. The behavioral models provide the design for 

the simulation software. 

 

In the next section, we discuss the first benefit, in 

the context of the AMCP. 

 

5. Translation into Software Design 
 

 
Figure 2. State effects model for the Ant N 

Mechanical Power and OpMode state variable.  

 



Using SA, system engineers use the models of the 

system under control to specify the control system 

software design in a manner that allows for direct 

translation into code.  Software engineers are not 

required to make guesses as to the intent of the system 

engineers, thus making implementation more 

straightforward and less prone to errors due to 

misinterpretation of the system engineering artifacts.  

This direct translation is possible because our software 

framework adheres to a specific architecture, as shown 

in Figure 3.  In this section, we describe the AMCP 

software in terms of the following structures and 

functions: goal network, mission planning and 

execution, goal achievement, and simulation. 

The goal network (GN) structure is the embodiment 

of operator intent. It contains all of the top-level goals 

and supporting goals necessary to accomplish the task 

asked of the system by the operator. When a goal 

comes into the system, it specifies a constraint on the 

value of a state variable over its duration, which is 

delimited by a starting timepoint and an ending 

timepoint. The GN also consists of temporal 

constraints, which express min-max constraints 

between timepoints (e.g., they are used to constrain the 

duration of a goal, or the relative ordering of goals). 

Each GN goes through stages of processing during 

which it is refined into an executable set of “intent 

timelines”. A hierarchy of goals supporting the 

operator-specified goals is iteratively produced during 

the elaboration stage, and the resulting set of goals are 

provided specific, conflict-free relative orderings on 

the timelines during the scheduling stage. Then, the 

GN is approved for promotion once all the goals have 

been scheduled. Finally, the execution of the GN 

begins. See [6] for more information on each of these 

processes. 

The mission planning and execution (MPE) 

function is responsible for setting up the GN and 

managing it. Along with GN elaboration, scheduling, 

promotion, and execution, MPE also verifies that 

executing goals are being satisfied, and runs 

appropriate failure response procedures if a goal 

failure occurs, as described in Section 6. 

The software framework uses components known 

as achievers to ensure that the system behaves as 

intended. Goal achievement is performed by two types 

of achievers: controllers and estimators. The 

architecture in Figure 3 includes the state-based 

“control diamond” pattern, which implements the goal 

achievement function in the architecture. For example, 

when the GN execution process asserts that the 

‘Transition to Tracking’ goal is to be placed on the 

Ant N Mechanical Power and OpMode state 

variable, the MPE function issues this goal to this state 

variable’s controller. Upon execution, the controller 

looks at the constraint specified by that goal.  The 

constraint dictates that the value of the Ant N 

Mechanical Power and OpMode state variable 

should become tracking. The controller checks the 

current estimated state of this state variable. If the 

current estimated state is, say, idle, then the controller 

issues the ‘Begin_Tracking’ command to the Hardware 

Adapter (HWA). The HWA interprets this command 

for the system under control and relays the appropriate 

directive to the hardware. Ideally the hardware will 

react by placing the antenna in tracking mode, as 

indicated in the state effects model in Figure 2. In the 

meantime, the HWA retrieves the measurements from 

the hardware, and forwards them to the estimator. On 

the basis of this and any other pertinent evidence, the 

estimator then makes a determination on the state of 

the hardware. In this case, if the HWA’s measurement 

provides confirmation that the antenna is indeed 

tracking, then the estimator updates the Ant N 

Mechanical Power and OpMode state variable’s 

operational mode as tracking. 

At this point the system has made a complete cycle 

of the control diamond (Figure 3), for the Ant N 

Mechanical Power and OpMode state variable.  The 

other state variables follow a similar pattern, with their 

achievers’ logic tailored appropriately per the models 

of the system under control. 

The actual hardware for the system under control 

may not always be available, in which case a 

simulation may be used in its place. Further discussion 

of our results from operating against hardware 

simulation is detailed in Section 8.1. 

Design documentation of the achievers and HWAs 

were captured using the same State Database described 

in Section 4. The software engineers referred to the 

same models created by the system engineers. Flexible 

representations supported by the wiki minimized the 
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Figure 3. State-based control architecture 

 



ambiguity that usually plagues the translation of high-

level requirements into software.  

 

6. Engineering Goal-Based Operations 
 

As specified in [1], design of goal-based operations 

in SA consists of defining: (1) types of goals that can 

be issued, (2) goal elaborations that specify supporting 

goals for each goal, and (3) system-specific logic 

required to correctly plan and execute goals.  

Defining goal types is a straightforward endeavor, 

as each state variable defined in the SA is associated 

with multiple maintenance goals and/or transition 

goals. A maintenance goal, as the name suggests, is a 

constraint to maintain either the value (control goal) or 

our level of certainty in the value (knowledge goal). In 

other words, maintenance goals provide a way to 

specify what state we want and how trustworthy that 

state information needs to be. For simplicity, we 

adopted a binary known or unknown constraint for all 

knowledge goals (which is consistent with the 

uncertainty representations of the state variables, as 

mentioned Section 4). Transition goals are necessary 

precursors to maintenance goals that provide 

constraints in order to “transition” state variables from 

their current values to the starting values of the 

maintenance goals. In AMCP, when we place a 

maintenance goal on an antenna’s pointing profile, in 

most instances the antenna will not initially be oriented 

in the same direction as the starting point of the 

pointing profile. A transition goal is then required to 

take the antenna from its current position to the 

starting point of the pointing profile. 

Goal elaboration is a way to use the state effects 

model to decompose a goal into supporting goals (see 

Figure 4). For our project, we translate a service 

request (consisting of a target, track times, and 

minimum number of antennas) into a single goal on the 

combined signal state variable. This goal is then 

elaborated into supporting goals as predicated by the 

effects relationships in the SED. Each supporting goal 

is in turn elaborated until there are no more supporting 

goals to be specified. Guidelines for how to define 

goal elaborations are outlined in [1], including “a 

control goal on a given state variable may elaborate 

into a supporting knowledge goal on the same state 

variable and supporting control goals on its affecting 

state variables”, and “a maintenance goal should 

elaborate into a transition goal on the same state 

variable”. 

In cases where there is more than one set of 

supporting goals that can be specified for a given goal, 

elaboration tactics capture these options, and define 

the logic for selecting the appropriate supporting goals 

to achieve the original goal, given the current system 
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Figure 4. AMCP Goal Elaboration Hierarchy (note: colors indicate the  level within the hierarchy). 

 



state. For example, in the elaboration of our combined 

signal goal, antennas are chosen based on availability 

and health. This corresponds to creating received 

signal goals on the assigned antennas. Such tactics 

provide flexibility in achieving goals under different 

system conditions and can also be used to recover from 

system faults. In our control framework, when a goal 

fails, responsibility for handling of the failure is passed 

up the elaboration hierarchy until a goal elaborator is 

found to have a tactic that helps to resolve the failure 

(somewhat akin to exception handling). In our system, 

when an antenna fails for any reason, the combined 

signal goal is re-elaborated using the following tactic: 

replace the signals from any unhealthy antennas with 

signals from available and healthy antennas, if 

possible. 

The complete goal elaboration tree for the AMCP is 

shown in Figure 4. These elaborations were specified 

using the SED in Figure 1. Central to our elaboration 

hierarchy is the multiplicity of goals generated from 

the combined signal goal. The combined signal goal 

elaborates into multiple goals on received signals, 

which corresponds to multiple assigned antennas, as 

denoted by the “Ant_N” prefix in a goal’s name. 

The third aspect of designing goal-based operations 

is the specification of system-specific logic required to 

correctly plan and execute goals. For example, systems 

engineers need to specify the logic that dictates 

whether two goals may be executed concurrently or 

sequentially on a given state variable’s timeline. More 

detail on how to specify such logic is provided in [1].   

 

7. User Interface for Operations 
 

The user interface (UI) is built upon the Eclipse 

Rich Client Platform, Java Message Service (JMS), 

and Relational Database Management System 

(RDBMS). Leveraging Eclipse and JMS, the UI 

supports monitoring from multiple perspectives (e.g., 

state estimates and measurements).  In near real-time, 

the operators can monitor service requests in both 

mission-centric and antenna-centric views. The service 

requests and service fulfillment information are 

rendered in a Gantt chart that affords the operators a 

bird’s-eye view of all progress. A tabular view 

contains detailed service fulfillment information and is 

linked to the Gantt chart.  This provides the operator 

the ability to drill down to needed information should 

human decision and intervention be required. The UI 

also provides operators the ability to correlate the 

antenna profile, pointing commands and the actual 

pointing measurements into a stereo plot. These graphs 

are useful to quickly diagnose antenna-related 

problems, especially in an arraying scenario. Finally, 

the RDBMS allows the UI to record all data generated 

as a response to a service request. All discrete 

information items are assigned globally unique IDs and 

automatically converted to relational records for 

storage. This persistent aspect of the UI allows data 

mining for history and trends. 

 

8. Operations Demonstration 
 

In this section, we present results from 

demonstrations of the AMCP. 

 

8.1. Simulated Antenna Array 
 

An actual NG-DSN array consisting of hundreds of 

antennas does not exist and is only conceptual at this 

time. Furthermore, tests on real antenna hardware are 

costly due to staffing of antenna personnel and 

maintenance costs. So in order to demonstrate our 

system’s fully scalable capabilities, we interfaced our 

control system to a software-simulated antenna array. 

In the AMCP system under control, each antenna 

was modeled per the state variables given in Section 4.  

A simulator was written for each of these state 

variables. The simulators were modeled after the 

expected behavior of the actual antenna hardware 

components, as captured in the state effects models. 

The simulated hardware elements served as the system 

under control shown in Figure 3. The simulators were 

also capable of off-nominal behavior (e.g., antenna 

failure) in order to test our control system’s fault 

recovery mechanisms. 

Our tests typically involved from five to fifty 

simulated antennas. A common test case had the 

operator issue a service request to track a spacecraft 

using five antennas.  Once all five antennas were “on 

point”, or actively tracking the spacecraft, a failure 

would be injected into one of the antennas.  We then 

verified that our control system detected the failed 

antenna, and brought up a new available antenna to 

take its place.  Various permutations of this test case 

were performed. 

One of the main advantages of autonomous control 

of the AMCP is the ability to monitor and control 

multiple concurrent activities with minimal operator 

intervention. For this reason, a suitable test was to 

have the operator submit multiple service requests for 

multiple target spacecraft. After doing so, the control 

system allocated the necessary number of antennas to 

each target spacecraft, and proceeded to track each 

target.  For example, five antennas pointed to one 



spacecraft, and six antennas to another, and four 

antennas to another, and so on. 

Although testing using the simulated antenna array 

was essential and very productive, the viability of our 

control system was demonstrated even further when 

interfaced to actual antennas, as described in the next 

section. 

 

8.2. Antenna Array Hardware 
 

During the development of AMCP, a separate team 

at JPL was prototyping the viability of the proposed 

NG-DSN concept. Their breadboard setup included 

two 6-meter dish antennas. We decided to demonstrate 

our control system on these actual antennas.  

These antennas were already being monitored and 

controlled using software that the aforementioned 

array prototype team had developed. We analyzed their 

software, broke it down into application layers, and 

identified appropriate interface points for our AMCP 

software. 

During these hardware-based demonstrations, our 

AMCP software behaved as expected. Upon 

submitting a service request through the UI (the same 

ones used in the simulated environment), we observed 

the actual hardware antenna slewing and tracking 

according to the pointing profile of the target. We 

simulated antenna faults by killing the UNIX processes 

responsible for tunneling the measurements from the 

antenna hardware to our control software’s HWA—

thus creating a situation where the antenna(s) in 

question stopped providing measurements. Fault-

handling (goal re-elaboration and re-scheduling) 

occurred immediately, and the expected robustness of 

our control system was verified. 

 

9. Conclusion 
 

We have successfully applied the State Analysis 

systems engineering methodology and utilized a state-

based control framework to produce and demonstrate a 

robust and scalable monitor and control software 

system for the proposed NG-DSN. This approach 

yielded several benefits: 

• Direct mapping from systems engineering 

specifications to software design minimized 

errors of translation and omission; 

• Goal-directed operations engineering allowed 

our system to respond to faults in an intelligent 

manner—trying different methods to ultimately 

satisfy the user’s intentions; and 

• Use of a structured wiki State Database to 

capture our models promoted a high level of 

collaboration within the team, and 

communication of the requirements was 

straight-forward. 

 

Future efforts will focus on infusion of this 

technology into other service-oriented DSN systems, 

not limited to the proposed NG-DSN, as well as other 

embedded system applications. 
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